Proline in alpha-helical kink is required for folding kinetics but not for kinked structure, function, or stability of heat shock transcription factor.

نویسندگان

  • J A Hardy
  • H C Nelson
چکیده

The DNA-binding domain of the yeast heat shock transcription factor (HSF) contains a strictly conserved proline that is at the center of a kink. To define the role of this conserved proline-centered kink, we replaced the proline with a number of other residues. These substitutions did not diminish the ability of the full-length protein to support growth of yeast or to activate transcription, suggesting that the proline at the center of the kink is not conserved for function. The stability of the isolated mutant DNA-binding domains was unaltered from the wild-type, so the proline is not conserved to maintain the stability of the protein. The crystal structures of two of the mutant DNA-binding domains revealed that the helices in the mutant proteins were still kinked after substitution of the proline, suggesting that the proline does not cause the alpha-helical kink. So why are prolines conserved in this and the majority of other kinked alpha-helices if not for structure, function, or stability? The mutant DNA-binding domains are less soluble than wild-type when overexpressed. In addition, the folding kinetics, as measured by stopped-flow fluorescence, is faster for the mutant proteins. These two results support the premise that the presence of the proline is critical for the folding pathway of HSF's DNA-binding domain. The finding may also be more general and explain why kinked helices maintain their prolines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

String Kernels and High-Quality Data Set for Improved Prediction of Kinked Helices in α-Helical Membrane Proteins

The reasons for distortions from optimal α-helical geometry are widely unknown, but their influences on structural changes of proteins are significant. Hence, their prediction is a crucial problem in structural bioinformatics. For the particular case of kink prediction, we generated a data set of 132 membrane proteins containing 1014 manually labeled helices and examined the environment of kink...

متن کامل

Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin.

Although it is commonly known as a helix breaker, proline residues have been found in the alpha-helical regions of many peptides and proteins. The antimicrobial peptide gaegurin displays alpha-helical structure and has a central proline residue (P14). The structure and activity of gaegurin and its alanine derivative (P14A) were determined by various spectroscopic methods, restrained molecular d...

متن کامل

Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5.

Gaegurin 5 (GGN5) is a cationic 24-residue anti-microbial peptide isolated from the skin of a Korean frog, Rana rugosa. It contains a central proline residue and an intra-residue disulphide bridge in its C-terminus, which are common to the anti-microbial peptides found in Ranidae. We determined the solution structure of GGN5 bound to SDS micelles for the first time and investigated the role of ...

متن کامل

The structure of Fis mutant Pro61Ala illustrates that the kink within the long alpha-helix is not due to the presence of the proline residue.

The influence of proline on bending of the alpha-helix was investigated by replacement of the proline residue located in the middle of the long alpha-helix of the Fis protein with alanine, serine, or leucine. Each of the three substitutions folded into a stable protein with the same or higher melting points than the wild-type, but only Pro61Ala was functionally active in stimulating Hin-mediate...

متن کامل

Examining the Conservation of Kinks in Alpha Helices

Kinks are a structural feature of alpha-helices and many are known to have functional roles. Kinks have previously tended to be defined in a binary fashion. In this paper we have deliberately moved towards defining them on a continuum, which given the unimodal distribution of kink angles is a better description. From this perspective, we examine the conservation of kinks in proteins. We find th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 9 11  شماره 

صفحات  -

تاریخ انتشار 2000